分类 PHP 下的文章

php把rgb色值转为16进制色

function rgb2Hex($r, $g, $b)
{
return '#' . strtoupper(dechex($r) . dechex($g) . dechex($b));
}

//如把 rgb(200,50,120)转为 #xxxxxx格式值
echo rgb2Hex(200,50,120);
?>

nginx返回500状态

很遇外,今天发现某站nginx返回500状态。 html源码看和200正常状态无异。

后分析后端php代码,断点排查后,是由于dede的模板上,某个用法不当。

对于dede模板机制一直不是很满意。早放弃使用dedecms了。

PHP服务端推送技术Long Polling

Long Polling与Polling概述
服务端推送技术应用越来越普遍,应用范围也越来越宽广,技术解决方案也越来越成熟且丰富。很多SNS网站的chat功能就有用到了Long Polling技术。比如fackebook, kaixin001。

Long Polling原理其实很简单,也很讨巧。与Polling相比,Long Polling客户端也许不会马上收到来自服务端的响应,需要等待一些时间(直到有新消息,或者连接timeout了等等)。同样的,客户端也不再需要定时向服务发送请求了,而是直到收到服务端响应之后,或者连接丢失之后,客户端接着马上请求客户端。这里,我打个比方,传统的Polling一般是由C向S 询问:”有我的信件吗?”。S接到询问之后,会立即查询,并且把查询结果告诉C,不管有没有C的信件,要码回复:”嗯,你有X封信。”,要码回复:”没,没有你的信”.而Long Polling更像是这样,C向S发出询问:”有我的信件吗?”,S开始查询,如果有则回复C:”嗯,有你x封信”。如果没有,则不作任何回复,而是让C 等着,自己一遍一遍地查询是否有订阅者的信。换句话说:当S收到C的查询请求之后,Polling则只查询一次,并且把查询结果告诉C;而Long Polling收到请求之后,则会一遍一遍地查询,直到有消息才会响应C,不然一直hold Client。

Long Polling相较传统的Polling而言,最大的实惠在于:减少了请求次数。举个例子,假定一个用户每2小时内,有可能收到2条新消息。如果采用传通的Polling方式,每30秒发向服务端发送一次查询请求的话。则在这2小时内,服务器需要处理240(60*60*2/30)次请求,其中至少有 238次请求是没有实际意义的。试想,如果是10000的并发量的话,这种浪费是很惊人的。相较而方,Long Polling没有那么浪费服务器资源来处理这些没有实际意义的请求。

Polling
传统的Polling实现方式比较单一,由客户端javascript脚本定时发送http请求。服务端脚本如下:

view plaincopy to clipboardprint?
header("Expires: Sun, 19 Nov 1978 05:00:00 GMT");
header("Last-Modified: ". gmdate("D, d M Y H:i:s") ." GMT");
header("Cache-Control: store, no-cache, must-revalidate");
header("Cache-Control: post-check=0, pre-check=0", FALSE);

$msg = get_msg();
if ($msg) {
echo $msg;
} else {
echo '0';
}

上面是一个传统polling简单的服务端脚本。很简单,收到客户端请求后,服务端马上执行脚本查询,并且立即响应客户端。客户端等待的时间很短,客户端唯一要做的事情就是定时向服务端发出查询请求。下面是请求时,通过tcpdump抓到的包:

1>17:49:03.533760 IP 192.168.0.98.4383 > devhome.http: S 3235664319:3235664319(0) win 65535
2>17:49:03.534336 IP devhome.http > 192.168.0.98.4383: S 2018732723:2018732723(0) ack 3235664320 win 5840
3>17:49:03.533841 IP 192.168.0.98.4383 > devhome.http: . ack 1 win 65535
4>17:49:03.534404 IP 192.168.0.98.4383 > devhome.http: P 1:781(780) ack 1 win 65535
5>17:49:03.534416 IP devhome.http > 192.168.0.98.4383: . ack 781 win 7020
6>17:49:03.535033 IP devhome.http > 192.168.0.98.4383: P 1:369(368) ack 781 win 7020
7>17:49:03.535110 IP devhome.http > 192.168.0.98.4383: F 369:369(0) ack 781 win 7020
8>17:49:03.535263 IP 192.168.0.98.4383 > devhome.http: . ack 370 win 65167
9>17:49:03.536105 IP 192.168.0.98.4383 > devhome.http: F 781:781(0) ack 370 win 65167
10>17:49:03.536111 IP devhome.http > 192.168.0.98.4383: . ack 782 win 7020

第1、2、3行,TCP三次握手,建立连接。
第4行,由192.168.0.98向服务端devhome发送httpd请求。
第5行,由服务端devhome确认收到了来自客户端192.168.0.98的http请求。
第6行,服务器响devhom响应客户端192.168.0.98刚才发的httpd请求。注意:特别注意一下第一列时间截,http请求与http响应的时间间隔很短,才0.001s
第7、8、9、10共4行,TCP四次挥手,断开连接。由服务端主动断开连接。

Long Polling
Long Polling较之Polling稍微有些不一样,Long Polling持续执行,以此延迟对客户端的响应。请查看代码:

view plaincopy to clipboardprint?
header("Expires: Sun, 19 Nov 1978 05:00:00 GMT");
header("Last-Modified: ". gmdate("D, d M Y H:i:s") ." GMT");
header("Cache-Control: store, no-cache, must-revalidate");
header("Cache-Control: post-check=0, pre-check=0", FALSE);
//在$timeout之后,关闭连接,并且要求客户3秒后重新请求
for ($i = 0, $timeout = 60; $i < $timeout; $i++ ) {
$msg = get_msg();
if ($msg) {
echo json_encode(array('t' => 'info' , 'c' => $msg));
flush();
exit(0);
}
usleep(3000000);
}
echo json_encode(array('t' => 'refresh', 'c' => 3000));
flush();
上面是Long Polling服务端代码。语意也很明了,如果有$msg,则会马上响应客户端请求,并且关闭该TCP连接。如果在$timeout之内,没有$msg,则会让客户端一直保持该TCP连接,不中断(关闭)。直到超过了$timeout(具体时间主要取决于$timeout * $usleep_time),服务端会要求客户端重新请求(重新建立TCP连接),同时关闭当前TCP连接。下面是通过 tcpdump抓到的包:

1>18:39:46.449563 IP 192.168.0.98.4407 > devhome.http: S 174149200:174149200(0) win 65535
2>18:39:46.449587 IP devhome.http > 192.168.0.98.4407: S 938669730:938669730(0) ack 174149201 win 5840
3>18:39:46.449692 IP 192.168.0.98.4407 > devhome.http: . ack 1 win 65535
4>18:39:46.450308 IP 192.168.0.98.4407 > devhome.http: P 1:793(792) ack 1 win 65535
5>18:39:46.450320 IP devhome.http > 192.168.0.98.4407: . ack 793 win 7128
6>18:42:46.521749 IP devhome.http > 192.168.0.98.4407: P 1:377(376) ack 793 win 7128
7>18:42:46.521825 IP devhome.http > 192.168.0.98.4407: P 377:412(35) ack 793 win 7128
8>18:42:46.521859 IP devhome.http > 192.168.0.98.4407: F 412:412(0) ack 793 win 7128
9>18:42:46.521997 IP 192.168.0.98.4407 > devhome.http: . ack 412 win 65124
10>18:42:46.522021 IP 192.168.0.98.4407 > devhome.http: . ack 413 win 65124
11>18:42:46.522965 IP 192.168.0.98.4407 > devhome.http: F 793:793(0) ack 413 win 65124
12>18:42:46.522970 IP devhome.http > 192.168.0.98.4407: . ack 794 win 7128

第1、2、3行,TCP三次握手,建立连接。
第4行,由192.168.0.98向服务端192.168.0.6发送http请求。
第5行,由192.168.0.6确认收到192.168.0.98刚刚发送的请求。
第6、7行,服务器host_6响应3分钟前客户端192.168.0.98发出的http请求。注意,第一列的时间截,第5行与第6行之差为3分钟。这与服务端脚本,客户端监控是相呼应的。
最后4行,TCP四次挥手,断开连接,同样由服务端devhome发起。

由上图可见(httpwatch绘制),正好验证了,响应客户端host_98的http请求,在3分钟之后。这也说明了,Long Polling与Polling的区别在于,客户端有可能需要等待更长时间才能收到服务端的响应。

NeiLyi注: long polling关键一定要设置超时,要不客户端已经退了,而服务端如果不知道,就一直在查询。(如:用户关闭浏览器)

php操作内存,共享内存,基于内存的消息队列操作

php作为脚本程序,通常生命周期都很短,如在web应用中,一次请求就是php运行的一个周期,请求结束则生命周期截止。所以php在处理需要共享的资源时,一般会将共享数据保存在数据库或dbm之类的文件中,再者就是利用内存实现共享。你可以选择已有的工具辅助你,像memcache;也可以自己编写代码访问操作系统的共享内存段。
php中对共享内存段的操作有两组函数:System V IPCShared Memory。其中System V IPC系列函数能够更方便的操作数据,无需像Shared Memory那样必须自己掌握读写时的偏移量、长度等,也不用序列化/反序列化来回转换(因为Shared Memory函数只支持字符串格式的数据参数)。但是System V IPC系列不支持Windows,所以如果要在win环境下使用,只能选Shared Memory。
因为php默认不支持这些函数,所以需要重编译php。如要使用:

System V信号量,编译时加上 –enable-sysvsem

System V共享内存,编译时加上 –enable-sysvshm

System V消息队列,编译时加上 –enable-sysvmsg

Shared Memory,编译时加上 –enable-shmop
先写个Shared Memory的例子:

<?php
$key = ftok(__FILE__, 'i');
$size = 100;
$shm_h = @shmop_open($key, 'c', 0644, $size);
if($shm_h === false) {
echo "shmop open failed";
exit;
}
$data = shmop_read($shm_h, 0, $size);
$data = unserialize($data);
//如果没有数据则写一个
if(empty($data)) {
echo "there is no data";
$data = "imdonkey";
//就算数据是文本,write时也要序列化
$write_size = shmop_write($shm_h, serialize($data), 0);
if($write_size === false) echo "shmop write failed!";
}
//如果有,显示出来,之后删掉
else {
echo "shared memory data: ";
print_r($data);
shmop_delete($shm_h);
}
shmop_close($shm_h);
?>

再写个System V shm的例子:

<?php
$shm_key = ftok(__FILE__, 'i');
$memsize = 120;
$shm_h = shm_attach($shm_key, $memsize, 0644);
if($shm_h === false) {
echo "shmop open failed";
exit;
}
$var_key = 3;
$data = @shm_get_var($shm_h, $var_key);
if(empty($data)) {
$data = "imdonkey";
echo "there is no data, insert $data.\n";
shm_put_var($shm_h, $var_key, $data);
} else {
echo "find data: $data\n";
shm_remove_var($shm_h, $var_key);
}
shm_detach($shm_h);
?>

可以看到,sysV对于每个数据都另外设立了对应的var_key,这样在同一内存区域可以保存多个数据,而不用像shmop中那样再申请另外一个共享内存区域,还免除了序列化的干扰(虽然数据最终还是以序列化的形式保存,但不用开发者去手动实现)。
例子虽然简单,但也有一些需要注意的地方,不管是shm_attach还是shmop_open,所申请的内存的大小一定要满足后面数据的体积,这个体积包括数据本身序列化后的长,还有php添加的少量header信息。php官方文档中有人提出了一种计算要申请的内存大小的公式,这个公式可以保证所申请的内存足够存储一个指定的数据。公式如下:

//当shm_attach第一次被调用时,php向共享内存写入一个header
$shmHeaderSize = (PHP_INT_SIZE * 4) + 8;
//当shm_put_var调用时,php会在序列化后的数据前面,加一个header
$shmVarSize = (((strlen(serialize($foo))+ (4 * PHP_INT_SIZE)) /4 ) * 4 ) + 4;
$memsize = $shmHeaderSize + $shmVarSize;

这个公式是否适用于所有情况,我不敢说,所以我想最好还是在程序中,将准备放入共享内存的数据结构设计好,尽量保证数据大小在某一范围内。
还有就是为了防止共享内存被浪费,当数据无用时及时调用对应的remove方法释放资源。
介绍完共享内存再顺带提一下消息队列Message Queue(也是在System V IPC函数组中),消息队列似乎可以视为另一种共享内存,只是数据存储的方式有些不同。简单来说,就是每个key对应一个队列,每个队列可以保存多个数据,数据间按照先进先出的原则进行操作。php文档中的例子很好的介绍了各函数的应用:

<?php
if ( sizeof($argv)<2 ) {
echo "Usage: $argv[0] stat|send|receive|remove msgType MSG [msg] \n\n" ;
echo "   EX: $argv[0] send 1 \"This is no 1\" \n" ;
echo "       $argv[0] receive ID \n" ;
echo "       $argv[0] stat \n" ;
echo "       $argv[0] remove \n" ;
exit;
}

$MSGKey = "123456" ;
$seg = msg_get_queue($MSGKey) ;

switch ( $argv[1] ) {
case "send":
msg_send($seg, $argv[2], $argv[3]);
echo "msg_send done...\n" ;
break;

case "receive":
$stat = msg_stat_queue( $seg );
echo 'Messages in the queue: '.$stat['msg_qnum']."\n";
if ( $stat['msg_qnum']>0 ) {
msg_receive($seg, $argv[2], $msgtype, 1024, $data, true, MSG_IPC_NOWAIT);
var_dump($msgtype);
var_dump($data);
echo "\n";
}
else {
echo "No Msg...\n";
}
break;

case "stat":
print_r( msg_stat_queue($seg) );
break;

case "remove":
msg_remove_queue($seg);
break;
}
?>

消息队列中的数据同样受到大小的约束,具体约束范围可通过msg_stat_queue的msg_qbytes看到。这段代码唯一有点小改动的地方就在接受消息时,指定了MSG_IPC_NOWAIT,不然如果目标队列没有数据,默认会一直等待。
一般会用到共享内存或消息队列的情况,都会涉及到多线程/进程,或跨语言的数据传递。如果是php脚本/进程间共享数据,那只要小心点操作就没什么问题。如果要求跨语言,那很可能遇到千奇百怪的问题,呵呵,我还没试过,但在网上看到别人发的苦水贴,以后有机会一定实验一下。
在调试共享内存、信号量、消息队列时,可以配合Linux系统命令观察数据存储情况及信号量、消息队列资源分配情况,如ipcs, ipcrm命令。

mongodb支持php安装

windows下直接去下载dll就可以了。
官方文档: http://www.mongodb.org/display/DOCS/PHP+Language+Center (适用与*nux).
这里就说freebsd环境(有网上说需要在高于freebsd7上才能安装)。
关键用php的pecl. (在php安装目录bin目录中。如果没有pecl,可以查下用pear扩展安装)。
执行:
pecl install mongo

接着:
修改php.ini
加入:
extension=mongo.so

这里说下:
1.如果安装了zend
只需要修改 Zend/etc/php.ini
会自动同步修改到 php安装目录中的 etc/php.ini

2. 注意。 extension_dir 值更改为 "/usr/local/php/lib/php/extensions/no-debug-non-zts-20060613/" (当然也可以把mongo.so拷贝到extension_dir对应的目录)

3. 重启php-cgi以及nginx. (可以先 killall php-cgi以及nginx,再新启动)

最后,查看phpinfo文件,如果出现mongo项,表示成功